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Abstract Many researchers have used time series models to construct population

forecasts and prediction intervals at the national level, but few have evaluated the

accuracy of their forecasts or the out-of-sample validity of their prediction intervals.

Fewer still have developed models for subnational areas. In this study, we develop

and evaluate six ARIMA time series models for states in the United States. Using

annual population estimates from 1900 to 2000 and a variety of launch years, base

periods, and forecast horizons, we construct population forecasts for four states

chosen to reflect a range of population size and growth rate characteristics. We

compare these forecasts with population counts for the corresponding years and find

precision, bias, and the width of prediction intervals to vary by state, launch year,

model specification, base period, and forecast horizon. Furthermore, we find that

prediction intervals based on some ARIMA models provide relatively accurate

forecasts of the distribution of future population counts but prediction intervals

based on other models do not. We conclude that there is some basis for optimism

regarding the possibility that ARIMA models might be able to produce realistic

prediction intervals to accompany population forecasts, but a great deal of work

remains to be done before we can draw any firm conclusions.
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Introduction

A substantial amount of research over the last several decades has dealt with the

measurement and evaluation of uncertainty in population forecasts. Much of this

research has focused on the development and application of time series models.

Some researchers have developed models of total population growth (e.g., Alho and

Spencer 1997; Pflaumer 1992), whereas others have focused on individual

components of growth—typically mortality and fertility (e.g., Keilman et al.

2002; Lee 1974, 1992; Lee and Tuljapurkar 1994; McNown and Rogers 1989), but

occasionally migration as well (e.g., De Beer 1993). These studies have focused

primarily on issues such as sources of uncertainty in population forecasts, the

development of models that provide specific measures of uncertainty, and how point

forecasts and prediction intervals vary from one model to another. Few have

evaluated the accuracy of the resulting forecasts or analyzed the out-of-sample

validity of prediction intervals.

Most of the research on time series forecasting models has focused on the

national level. Population forecasts, however, are widely used for planning and

analytical purposes at the state and local levels (Smith et al. 2001). Although a

number of studies have evaluated the precision and bias of state and local forecasts

(e.g., Murdock et al. 1984; Rayer 2004; Smith and Sincich 1992; Tayman 1996;

White 1954), only a few have attempted to evaluate forecast uncertainty (e.g., Smith

and Sincich 1988; Swanson and Beck 1994; Tayman et al. 1998). Given the

widespread use of subnational population forecasts for decision-making purposes,

the growing importance of time series models in national population forecasting,

and the increasing emphasis in the literature on measures of uncertainty, we believe

an analysis of time series forecasting models for subnational areas is in order.

Few studies have developed and evaluated time series models for subnational

areas. In the most comprehensive study, Voss et al. (1981) tested several ARIMA

models for states and chose a single model for their detailed analyses. Using a

number of different launch years and forecast horizons, they used this model to

construct population forecasts for the 48 contiguous states in the United States.

They evaluated forecast accuracy by comparing the resulting forecasts with census

counts and census-based population estimates. They also compared the accuracy of

ARIMA forecasts with the accuracy of several other forecasting models and found it

to be roughly the same. The authors briefly discussed the use of ARIMA models for

constructing prediction intervals and examined their efficacy as a measure of

forecast uncertainty, but did not pursue that line of research.

In this article, we select six ARIMA models for states in the United States. Using

these models and a series of annual population estimates from 1900 to 2000, we

construct population forecasts for four states chosen to reflect a range of population

size and growth rate characteristics; both of these factors are known to affect

forecast accuracy (Smith et al. 2001). The forecasts are based on a variety of

combinations of model, launch year, base period, and forecast horizon; these factors

are also known to affect forecast accuracy (Smith et al. 2001). We compare the

forecasts with census counts for the corresponding years and attempt to answer the

following questions:
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(1) What is the impact of differences in model specification, length of base period,

and length of forecast horizon on precision, bias, and the width of prediction

intervals?

(2) How consistent are the results from one state to another?

(3) How consistent are the results from one launch year to another?

(4) What proportion of future populations fall within the prediction intervals?

(5) What do these results tell us about the usefulness of time series models for

forecasting subnational populations and for assessing the uncertainty of those

forecasts?

We focus on ARIMA models and do not investigate other time series models or

statistical methods that borrow strength across time and space or rely on non-

Gaussian error distributions (e.g., Granger and Newbold 1986). Such alternative

approaches are potentially useful but lie beyond the scope of the present study.

We have two basic objectives. The first is to summarize the out-of-sample error

characteristics of commonly used ARIMA forecasting models. The second is to

evaluate the out-of-sample performance of the prediction intervals produced by

those models. By ‘‘out-of-sample,’’ we mean that data from a historical base period

(e.g., 1900–1950) are used to produce forecasts for subsequent years (e.g., 1960,

1970, and 1980). By using out-of-sample point forecasts and prediction intervals,

we can simulate actual forecasting situations in which information beyond the

historical base period is unknown. Although this is an exploratory analysis based on

a limited number of states, we believe these simulations provide useful information

regarding the forecasting performance of commonly used time series models and the

validity of using such models as predictors of population forecast uncertainty.

Data and terminology

Using a set of annual population estimates from 1900 to 2000 (U.S. Census Bureau

1956, 1965, 1971, 1984, 1993, 2002), we started by analyzing population change by

decade for all states in the United States with the exception of Alaska and Hawaii,

which did not have data back to 1900. For our empirical analysis, we chose four

states that exhibited widely varying size and growth rate characteristics: Wyoming,

Maine, Florida, and Ohio. These states reflect a broad range of population growth

patterns and provide a diverse data set for conducting an exploratory analysis at the

state level.

Wyoming is the smallest state in the United States, with a population of just

under half a million in 2000. As shown in Table 1, its growth rates fluctuated

considerably from one decade to the next, including one decade with negative

growth. Maine is also a small state (1.3 million in 2000), but exhibited moderate and

relatively stable growth rates between 1900 and 2000. Florida is the 4th largest state,

with almost 16 million residents in 2000. It has grown rapidly but unevenly since

1900, with growth rates ranging between 27% and 78% per decade. Ohio is the 7th

largest state, with a population of 11.4 million in 2000. Ohio has grown much less

rapidly than Florida, but its growth rates have fluctuated considerably from one

decade to the next.
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These four states followed markedly different population growth patterns during

the 20th century. Florida’s population grew by 13.2 million between 1950 and 2000,

compared to only 2.3 million between 1900 and 1950. Maine also added more

residents during the second half of the century than the first half: 360,000 compared

to 222,000. Growth in Wyoming was about the same in both time periods, as the

state added 197,000 residents between 1900 and 1950 and 204,000 between 1950

and 2000. Ohio was the only state in our sample that added fewer residents in the

second half of the century than the first, growing by 3.8 million between 1900 and

1950 and 3.4 million between 1950 and 2000.

We use the following terminology to describe population forecasts:

(1) Base year: the year of the earliest population size used to make a forecast.

(2) Launch year: the year of the latest population size used to make a forecast.

(3) Target year: the year for which population size is forecasted.

(4) Base period: the interval between the base year and launch year.

(5) Forecast horizon: the interval between the launch year and target year.

For example, if data from 1900 through 1950 were used to forecast population

size in 1980, then 1900 would be the base year, 1950 would be the launch year,

1980 would be the target year, 1900–1950 would be the base period, and 1950–1980

would be the forecast horizon.

ARIMA modeling

A number of different time series models can be used for forecasting purposes. In

this study, we use ARIMA models based on past population values and the dynamic

and stochastic properties of error terms. Like other extrapolation methods, these

models do not require knowledge of underlying structural relationships; rather, they

are based on the assumption that past values provide sufficient information for

forecasting future values. The two main advantages of univariate ARIMA models

are: (1) they require historical data only for the population of the area being

forecasted, and (2) their underlying mathematical and statistical properties provide a

basis for developing probabilistic intervals to accompany point forecasts (Box and

Jenkins 1976; Nelson 1973). ARIMA models are commonly used for forecasting

purposes, but the methods used in developing and applying those models are more

complex than is true for most extrapolation methods.

Table 1 Percentage population change in the 20th century by decade, sampled states

State 1900–

1910

1910–

1920

1920–

1930

1930–

1940

1940–

1950

1950–

1960

1960–

1970

1970–

1980

1980–

1990

1990–

2000

Florida 42.6 27.2 52.9 30.2 46.7 78.1 37.9 42.6 32.4 23.2

Maine 7.2 3.5 3.8 6.1 8.0 6.3 2.9 12.4 9.3 3.7

Ohio 15.0 21.2 14.9 4.0 15.2 22.0 10.2 0.7 0.6 4.6

Wyoming 58.1 34.0 14.7 10.6 16.0 14.1 1.5 41.1 �4.2 8.8
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ARIMA model specifications

The general ARIMA model is expressed as ARIMA(p,d,q) where p is the order of

the autoregressive term, d is the degree of differencing, and q is the order of the

moving average term. Models based on time intervals of less than one year may also

require seasonal components that are not relevant in the present study. Our aim in

this study is to investigate the behavior of commonly used ARIMA specifications

that reflect different assumptions about future population trajectories. To this end,

we analyzed six ARIMA models.

Models 1 and 2 contain a constant term and incorporate first-order differences

and first-order terms for p and q. Model 1 contains a first-order autoregressive term

but no moving average term; it is identified as ARIMA(1,1,0). This model has been

used for population forecasts of Sweden (Cohen 1986; Saboia 1974) and states in

the United States (Smith and Sincich 1992); some analysts have found it to

outperform more complex time series formulations (e.g., Voss et al. 1981). Model 2

contains a first-order moving average term but no autoregressive term; it is

identified as ARIMA(0,1,1) and is equivalent to a simple exponential smoothing

model. Models of this type have been used by Alho (1990) to forecast U.S.

mortality. De Beer (1993) used a similar model, but it did not require differencing

because the net migration time series for Netherlands he analyzed was already

stationary. Forecasts from ARIMA models with a first difference and constant term

will follow a linear trend, with the constant term equal to the slope of the trend.

Models 3 and 4 contain a constant term and incorporate second-order differences.

Model 3 contains a second-order autoregressive term but no moving average term; it

is identified as ARIMA(2,2,0) and was used by Pflaumer (1992) to forecast U.S.

population. Model 4 contains a first-order moving average term but no autoregres-

sive term; it is identified as ARIMA(0,2,1). Models of this type have been used by

Cohen (1986) and Saboia (1974). Some analysts have suggested that second

differences may be optimal for modeling human populations and have provided

evidence that models containing higher order differences may outperform models

using only first differences (e.g., McNown and Rogers 1989; Saboia 1974).

Forecasts from models such as Models 3 and 4, with second-order differences and a

constant term, follow a quadratic trend and their prediction intervals diverge more

quickly and are wider than intervals based on models containing first-order

differences (Makridakis et al. 1998).

These four models have often been used to forecast population change or the

components of population growth. We also investigated two other ARIMA models.

Model 5 contains second-order differences and moving average parameters but does

not have a constant term; it is identified as ARIMA(0,2,2) and is equivalent to Holt’s

linear trend exponential smoothing method. This model extrapolates the trend in the

historical data series with more weight given to the last two observations

(Makridakis et al. 1998). The population trajectory for Model 5 tends to be more

accelerated than a model with first differences and a constant term, but less

accelerated than a model with second differences and a constant term (Nelson

1973).
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Our last ARIMA model (Model 6) has the same specifications as Model 2 but

uses the natural logarithm of population; it is identified as ARIMA ln(0,1,1). One

characteristic of prediction intervals based on natural log transformations is that

although they are not symmetric around the population forecast, they are symmetric

around the forecast of the transformed population (Nelson 1973). Pflaumer (1992)

examined forecasts based on an ARIMA(1,1,0) model using the natural logarithm of

the U.S. population. We evaluated both ARIMA ln(1,1,0) and ARIMA ln(0,1,1)

specifications using the autocorrelation and partial autocorrelation functions, the

augmented Dickey–Fuller test, the Bayesian Information Criteria, and the

Portmanteau test. (We discuss these and other model identification techniques in

the following section.) We chose the ln(0,1,1) model because it does not appear to

be misspecified for any state and the model selection criteria favored it over the

ln(1,1,0) model.

As noted below, we fit each model for each state using 15 different combinations

of base period and launch year. For individual states and the combination of

forecasts across states, we can judge the performance of these six models in terms of

precision, bias, and the performance of prediction intervals. Although particular

models may be misspecified for particular states, we believe that combining

forecasts across states will provide interesting and useful findings.

To address the issue of potential model misspecification, we created a 7th model

(Hybrid) using the five ARIMA specifications applied to the untransformed

population (i.e., Models 1–5). These five models represent a plausible range of

population trajectories for each state. To build the hybrid model, we applied model

identification techniques to each state/launch year combination and selected the best

of the five ARIMA models. The next section discusses the procedures used to

identify ARIMA specifications and choose the specific models that comprise the

hybrid model.

ARIMA model identification

ARIMA model identification refers to the process for determining the best values of p, d,

and q, which typically range from 0 to 2. The d value must be determined first because a

stationary time series is required to properly identify the values of p and q (e.g.,

Brockwell and Davis 2002; Granger 1989). A nonstationary time series can generally be

converted into a stationary one by taking first or second differences. The long-term

dynamics of ARIMA models are generally controlled more by the differencing term (d)

than by the values of the autoregressive and moving average terms (p and q), which have

their greatest impact on short-term dynamics (Chatfield 2000).

Fifty observations is often suggested as the minimum required for identifying

ARIMA models (e.g., Granger and Newbold 1986; McCleary and Hay 1980; Meyler

et al. 1998; Saboia 1974). We therefore used 50-year base periods in our attempts to

identify the best models. In our analyses of forecast errors, however, we used base

periods of five different lengths (10, 20, 30, 40, and 50 years) in order to test for the

effects of differences in length of base period on forecast accuracy and the

performance of the prediction intervals. This is discussed more fully in the

following section.
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The Box–Jenkins (1976) approach to ARIMA model identification relies on

assessing the patterns of the autocorrelation function (ACF) and partial autocor-

relation function (PACF) and their standard errors. This quasi-formal approach to

model identification is subjective and highly dependent on the skill and interpre-

tation of the analyst, especially in the case of mixed ARMA models (Granger and

Newbold 1986; Meyler et al. 1998). To deal with this problem, several less

subjective methods have been developed to help identify the best ARIMA model.

These methods are based on statistical tests for stationarity (e.g., Dickey et al. 1986)

and statistics such as the Akaike Information Criterion (AIC) and Bayesian

Information Criteria (BIC) for selecting the best values of p and q while avoiding

models with too many parameters (Brockwell and Davis 2002).

We used the augmented Dickey–Fuller unit root test to identify the degree of

differencing required to obtain a stationary series. This test performs a regression of

the differenced series Y 0t ¼ Yt � Yt�1 against a lagged term (Yt) and lags in the

differenced series, which are usually set to three (Makridakis et al. 1998):

Y 0t ¼ /Yt�1 þ b1Y 0t�1 þ b2Y 0t�2 þ b3Y 0t�3:

If the series Yt is stationary, u will be negative and significant, causing a rejection of

the null hypothesis that there is a unit root. We evaluated the augmented Dickey–Fuller

test for six series: the original series, a logarithmic transformation of the original

series, and first and second differences of both the original and transformed series.

We also analyzed the AIC and BIC statistics for the six ARIMA models. Improved

fit of the ARIMA model lowers AIC and BIC values, while additional terms that do

not increase the likelihood more than the penalty amount increase them (Makridakis

et al. 1998). Thus, the smallest values for the AIC and BIC statistics are desirable

when selecting an ARIMA model. The BIC measure is preferable to the AIC measure

since it less likely to lead to an over-parameterized model (Brockwell and Davis

2002; Meyler et al. 1998). The results of our analyses were similar using both the

AIC and BIC statistics; we present only the latter in this study.

The top half of Table 2 reports MacKinnon approximate p-values for the

augmented Dickey–Fuller test; p-values less than .05 indicate a stationary series.

The lowest-differenced instances that result in a stationary series are highlighted,

once for the unlogged series and once for the logged series. We focus on the least

amount of differencing necessary to achieve a stationary series; this helps us avoid

selecting an over-differenced model that can lead to inflated sample variances and

prediction intervals (Makridakis et al. 1998; Meyler et al. 1998). We note, however,

that prediction intervals from time series models have often been found to

underestimate forecast uncertainty even for models that have been appropriately

specified (Chatfield 2000).

The original series was nonstationary in every state/launch year combination, as

evidenced by p-values that exceeded .86. Across launch years, Florida required

second differencing in order to achieve stationarity in the unlogged series. For the

logarithmic series, stationarity was achieved with a single-order difference. In

Maine and Ohio, the augmented Dickey–Fuller test indicated a stationary series

after a single-order difference, for both the original and logarithmic series. Results
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were less consistent across launch years in Wyoming. For both the logged and

unlogged series, data for launch year 1950 indicated that a second-order differenced

series was needed to achieve stationarity, whereas a single-order difference was

Table 2 Objective criteria for identifying ARIMA specificationsa

Dickey–Fuller test probabilities*

Florida Maine

1950 1960 1970 1950 1960 1970

Original Series .999 1.000 .999 .923 .990 .967

1st Difference .088 .761 .605 .005 .002 .003

2nd Difference .000 .000 .000 .000 .000 .000

ln (Original series) .962 .997 .950 .895 .982 .950

ln (1st Difference) .010 .033 .017 .004 .001 .002

ln (2nd Difference) .000 .000 .000 .000 .000 .000

Ohio Wyoming

1950 1960 1970 1950 1960 1970

Original Series .923 .990 .967 .866 .948 .873

1st Difference .005 .002 .003 .332 .017 .022

2nd Difference .000 .000 .000 .001 .000 .000

ln (Original Series) .895 .982 .950 .263 .553 .716

ln (1st Difference) .004 .001 .002 .288 .012 .016

ln (2nd Difference) .000 .000 .000 .000 .000 .000

Bayesian Information Criteria (BIC)

Florida Maine

1950 1960 1970 1950 1960 1970

Model 1: (1,1,0) 544 574 575 360 373 373

Model 2: (0,1,1) 546 594 595 365 376 376

Model 3: (2,2,0) 546 576 577 367 388 390

Model 4: (0,2,1) 529 571 572 363 384 386

Model 5: (0,2,2)b 536 572 573 362 379 376

Model 6: ln(0,1,1) �212 �213 �227 �306 �310 �313

Ohio Wyoming

1950 1960 1970 1950 1960 1970

Model 1: (1,1,0) 602 622 622 293 308 310

Model 2: (0,1,1) 603 625 625 294 309 310

Model 3: (2,2,0) 604 636 636 295 327 329

Model 4: (0,2,1) 594 628 628 291 314 317

Model 5: (0,2,2) b 596 626 626 290 313 312

Model 6: ln(0,1,1) �280 �283 �286 �229 �245 �262

a Based on a sample of 50 observations
b Model does not include a constant term

*p < .05 rejects the hypothesis of a unit root (nonstationary time series)
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sufficient for launch years 1960 and 1970. The first-order differenced logarithmic

series is the most consistent for the states in our sample, being stationary in 11 out of

12 state/launch year combinations.

The bottom half of Table 2 reports the BIC statistics, with the numbers for the

best model (i.e., the one with the lowest non-negative value) highlighted for each

state/launch year combination. In general, the BIC results were consistent with the

findings of the augmented Dickey–Fuller test. Because of the logarithmic

transformation, criteria for the logarithmic series are not comparable to criteria

for the original series. In general, the ARIMA ln(0,1,1) model performed well

across all states and launch years, with the exception of Wyoming for the 1950

launch year. In this case, a second-order difference was required to make the

logarithmic series stationary, but we still favor a logarithmic model with a first-

rather than second-order difference because the latter yielded prediction intervals

that appeared unrealistically wide, especially for longer forecast horizons.

Turning to the results for the unlogged series, BIC values in Florida were lowest

for the ARIMA(0,2,1) model. In Maine, the BIC for the ARIMA(1,1,0) model was

substantially lower than that for other models across launch years. In Wyoming, the

BIC suggested that an ARIMA(0,2,2) model without a constant was best for the

1950 launch year, while an ARIMA(1,1,0) was best for later launch years. In Ohio,

the BIC suggested that ARIMA(0,2,1) was the best model for the 1950 launch year,

while the ARIMA(1,1,0) model was the best for the other launch years. However, as

noted above, there are valid reasons for preferring the lowest degree of differencing

required for stationarity. Since the Dickey–Fuller test indicated stationarity in the

single-differenced series, we prefer the simpler ARIMA(1,1,0) model for Ohio even

for the 1950 launch year because it has the smallest BIC of the two single-order

difference models tested.

Based on the stationarity test, the BIC, and our analysis of the ACF and PACF,

we constructed a hybrid model by choosing the best individual model from Models

1–5 for each state and launch year. We also performed the Portmanteau test

(Granger and Newbold 1986) on the residuals and found that the random residuals

‘‘white noise’’ requirement was satisfied for the identified models. This model

identification process indicated that relatively few specifications were needed for the

12 state/launch year combinations. For the logarithmic series, the ARIMA ln(0,1,1)

model fit 11 of 12 state and launch years. For the untransformed series, the hybrid

model consisted of an:

• ARIMA(1,1,0) model for all launch years in Ohio and Maine and the 1960 and

1970 launch years in Wyoming;

• ARIMA(0,2,1) model for all launch years in Florida; and

• ARIMA(0,2,2) model without a constant for the 1950 launch year in Wyoming.

Forecasts and prediction intervals

We applied each of the six individual models to each state using three launch years

(1950, 1960, and 1970), base periods of five lengths (10, 20, 30, 40, and 50 years),
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and forecast horizons of three lengths (10, 20, and 30 years). This allowed us to

analyze a wide range of values for each of variable and a large number of

combinations of launch year, base period, and forecast horizon. With the addition of

the hybrid model, this approach gave us a total of 315 point forecasts and associated

prediction intervals for each state (7 · 3 · 5 · 3).

We compared each point forecast to the population count for the relevant target

year. We refer to the resulting percentage differences as forecast errors, although

they may have been caused partly by errors in the population counts themselves.

Following Lee and Tuljapurkar (1994), we express the size of the prediction interval

as a half-width by dividing one-half of the difference between the upper and lower

ends of the interval by the point forecast and multiplying the result by 100. For

symmetrical intervals, the half-width reflects the percentage distance between the

point forecast and the lower and upper bounds of the prediction interval. We

calculated half-widths for both 95% and 68% prediction intervals, but report only

the latter. In this study, then, a half-width of 15% means that about two-thirds of

future populations are expected to fall within plus or minus 15% of the point

forecast.

Forecast errors were measured in two ways. The mean absolute percentage error

(MAPE) is the average when the direction of error is ignored; it is a measure of

precision, or how close the forecasts were to out-of-sample population counts

regardless of whether they were too high or too low. The mean algebraic percentage

error (MALPE) is the average when the direction of error is accounted for; it is a

measure of bias, or the tendency of forecasts to be too high or too low. Both measures

have been used frequently in evaluations of population forecast accuracy (e.g.,

Ahlburg 1992; Keilman 1999; Pflaumer 1992; Rayer 2004; Smith and Sincich 1992).

To simplify the analysis, we started by aggregating the point forecasts and half-

widths from each of the four states and three launch years. We calculated the

average errors and half-widths of these 12 forecasts for each combination of model,

base period, and forecast horizon. Finally, we evaluated the results separately for

each state and launch year.

Results averaged over all states and launch years

The results averaged over all states and launch years are shown in Tables 3–5.

Several patterns stand out. We first discuss those related to the six individual

ARIMA models and then those related to the hybrid model.

The results for Models 1 and 2 were very similar. For every combination of base

period and forecast horizon, the MAPEs, MALPEs, and half-widths were almost the

same for Model 2 as for Model 1. It appears that the inclusion or omission of the

first-order autoregressive term or the moving average term had little impact on the

resulting forecasts; similar results were reported by Voss et al. (1981).

MAPEs and MALPEs for Models 3 and 4 were similar to each other, but half-

widths were not. For every combination of base period and forecast horizon, half-

widths were much larger for Model 3 than Model 4. Apparently, differences in the

specification of these two nonlinear-growth models had little impact on precision

and bias but had a substantial impact on the measurement of uncertainty.
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MAPEs and half-widths were generally smallest for Models 1 and 2 and largest

for Models 3 and 4, with those for Models 5 and 6 falling somewhere in between.

These results were found for almost every combination of base period and forecast

horizon. The linear-growth models thus tended to produce more precise forecasts

and narrower prediction intervals than the nonlinear-growth models. For MAPEs,

differences were often very large for 10-year base periods but became steadily

smaller as the base period increased; at 50 years, differences were fairly small. For

half-widths, differences were often quite large for all base periods, especially for

longer forecast horizons.

The impact of the length of the base period on forecast precision varied by

model. For Models 1, 2, and 5, MAPEs generally increased with increases in the

base period, whereas for Models 3, 4, and 6 they generally declined. These results

were found for all three forecast horizons. In this sample, then, 10 years of base data

were sufficient to obtain maximum precision for Models 1, 2, and 5 but for Models

3, 4, and 6 precision increased continuously as more base data were added (although

Table 3 All states and launch years: mean absolute percentage error (MAPE) by model, length of base

period, and length of forecast horizon

Horizon length Base period length

10 20 30 40 50

Model 1: (1,1,0) 10 9.2 9.9 9.9 9.9 10.1

20 13.7 14.8 14.8 15.1 15.8

30 15.9 17.4 17.7 18.2 18.6

Model 2: (0,1,1) 10 9.5 9.9 10.1 10.3 10.7

20 13.7 14.8 14.9 15.5 16.4

30 16.4 18.0 18.4 18.9 19.4

Model 3: (2,2,0) 10 19.0 13.3 12.7 12.4 11.9

20 36.0 20.8 19.5 16.8 15.5

30 56.0 30.7 28.2 22.7 20.2

Model 4: (0,2,1) 10 18.7 14.6 13.7 11.9 11.5

20 41.3 26.7 20.3 17.2 16.8

30 67.9 41.8 27.9 21.3 19.2

Model 5: (0,2,2)a 10 10.9 12.7 12.7 12.7 11.6

20 16.1 19.4 19.6 19.8 18.0

30 16.5 20.4 20.2 20.2 17.9

Model 6: ln(0,1,1) 10 10.7 11.0 8.9 8.7 9.3

20 16.3 17.1 13.0 12.5 13.2

30 24.7 25.0 18.0 16.8 19.0

Model 7: Hybrid 10 11.9 11.1 10.7 9.8 9.7

20 18.6 16.1 15.5 13.9 13.8

30 19.8 16.0 14.6 12.8 12.5

a Model does not include a constant term
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the increases became steadily smaller as the base period became longer). It is

noteworthy that Models 1 and 2 are linear-growth models and, although Model 5 is

nonlinear, it is more nearly linear than Models 3, 4, and 6. It appears that models

with first-order differences can be estimated fairly accurately using a relatively short

data series, whereas models with second-order differences require a considerably

longer series.

Increasing the length of the base period reduced the size of the half-width for all

six models and for every length of forecast horizon, indicating that additional base

data reduced the uncertainty associated with population forecasts (or, at least,

additional data reduced this measure of uncertainty). The reductions were

particularly great for Models 3 and 4, especially for longer horizons. It should be

noted, however, that narrower prediction intervals are not necessarily better; what

matters is how well they measure forecast uncertainty (Chatfield 2000). We will

investigate this issue later in the article.

Table 4 All states and launch years: mean algebraic percentage error (MALPE) by model, length of base

period, and length of forecast horizon

Horizon length Base period length

10 20 30 40 50

Model 1: (1,1,0) 10 �3.6 �4.3 �5.4 �6.1 �6.3

20 �4.8 �6.0 �7.9 �9.1 �9.5

30 �6.4 �7.7 �10.2 �11.8 �12.4

Model 2: (0,1,1) 10 �3.6 �4.7 �6.0 �6.9 �7.2

20 �4.9 �6.4 �8.5 �9.8 �10.4

30 �6.5 �8.2 �10.8 �12.5 �13.1

Model 3: (2,2,0) 10 7.3 5.2 4.2 3.6 2.8

20 22.2 15.9 12.5 10.5 8.5

30 36.6 26.5 19.9 15.8 12.3

Model 4: (0,2,1) 10 7.7 7.3 4.0 1.8 1.0

20 26.5 21.1 12.5 7.4 5.3

30 46.7 35.4 20.7 12.0 8.4

Model 5: (0,2,2)a 10 �0.5 0.9 0.1 0.3 �0.9

20 0.7 3.7 2.4 2.9 0.7

30 0.0 4.3 2.5 3.2 0.2

Model 6: ln(0,1,1) 10 0.6 0.6 �0.4 �0.7 0.1

20 6.4 6.2 4.1 3.5 5.3

30 14.8 14.3 10.4 8.9 11.5

Model 7: Hybrid 10 �1.4 0.8 �0.8 �1.3 �1.9

20 �0.5 4.1 1.1 0.1 �1.0

30 �1.0 5.3 1.1 �0.4 �1.8

a Model does not include a constant term
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Models 1 and 2 had a negative bias whereas Models 3 and 4 had a positive bias. This

result was found for every combination of base period and forecast horizon. That is,

Models 1 and 2 tended to produce forecasts that were too low and Models 3 and 4

tended to produce forecasts that were too high. Furthermore, the absolute value of the

MALPEs for these four models became larger as the horizon increased—both when

MALPEs were positive and when they were negative—indicating that the magnitude

of the bias increased with the length of the forecast horizon. Models 5 and 6, on the

other hand, displayed relatively little bias. The only exception was the 30-year horizon

for Model 6, which displayed a fairly substantial upward bias.

The impact of the length of the base period on MALPEs varied by model. For

Models 1 and 2, increasing the base period exacerbated the downward bias of the

forecasts. For Models 3 and 4, increasing the base period reduced the upward bias.

For Models 5 and 6, increasing the base period had no consistent impact on bias. As

we note below, these results were not found for all individual states and launch

years.

Table 5 All states and launch years: average half-width of the 68% prediction interval by model, length

of base period, and length of forecast horizon

Horizon length Base period length

10 20 30 40 50

Model 1: (1,1,0) 10 7.7 7.2 7.0 6.4 5.9

20 12.2 10.9 10.4 9.4 8.7

30 15.7 13.7 12.9 11.6 10.6

Model 2: (0,1,1) 10 7.0 6.2 5.8 5.1 4.7

20 10.8 9.2 8.3 7.3 6.6

30 13.8 11.6 10.2 8.9 8.0

Model 3: (2,2,0) 10 28.4 22.9 21.2 18.0 16.0

20 75.1 56.1 51.7 43.5 38.4

30 135.9 92.0 86.0 71.8 63.2

Model 4: (0,2,1) 10 20.8 15.2 12.8 11.0 10.0

20 52.2 34.2 29.0 24.8 22.3

30 96.1 53.3 46.2 39.7 35.7

Model 5: (0,2,2)a 10 15.2 13.1 11.2 9.5 7.6

20 32.9 27.4 23.1 19.3 14.9

30 51.5 41.4 35.0 29.1 22.1

Model 6: ln(0,1,1) 10 9.7 8.9 8.5 7.8 7.5

20 17.2 14.7 13.6 12.2 11.7

30 25.3 20.4 18.5 16.3 15.4

Model 7: Hybrid 10 13.1 9.5 8.0 7.1 6.3

20 29.1 17.0 13.8 12.1 10.7

30 54.3 23.5 18.7 16.3 14.3

a Model does not include a constant term
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Both MAPEs and half-widths increased steadily with the length of the forecast

horizon. This result was found for every model and every base period. This is not

surprising, of course: Longer horizons create greater uncertainty and larger errors

because they provide more opportunities for growth to deviate from predicted

trends. Similar results have been reported in many other studies (e.g., Cohen 1986;

Rayer 2004; Smith and Sincich 1992; Voss et al. 1981).

The hybrid model (Model 7) performed very well on tests of precision and bias,

especially when the base period was at least 20 years long. MAPEs were generally

similar to those found in the individual model with the smallest MAPE; sometimes,

they were smaller than for any individual model. Half-widths were generally larger

than those found for Models 1 and 2 but smaller than those found for Models 3 and

4. MALPEs were very small, indicating a low degree of bias; in most instances,

MALPEs from the hybrid model were smaller (in absolute value) than MALPEs

from any individual model. Furthermore, the hybrid model showed no consistent

direction of bias, as MALPEs were sometimes positive and sometimes negative.

MAPEs and half-widths generally increased with the length of the forecast horizon

and declined with the length of the base period, but MALPEs displayed no

consistent relationship with either variable.

Results by state

Several patterns are apparent when errors and half-widths from the four states and

three launch years are averaged together. Do the same patterns appear when

averages of the three launch years are calculated separately for each state? For the

most part they do, but not in every instance. Detailed results of this analysis are

available from the authors upon request; we summarize them here.

For every state and all combinations of forecast horizon and base period, MAPEs

for Model 1 were very similar to those for Model 2. For these two models, Maine

had substantially smaller MAPEs than any other state and Florida had the largest. In

terms of precision, then, the two linear-growth models performed best in a state with

a slow, steady growth rate and worst in a state with a high, volatile growth rate.

MAPEs for Models 3–6 differed considerably from each other. Model 3 had

notably smaller MAPEs than the other nonlinear models in Florida and Model 6 had

notably smaller MAPEs in Maine. Models 3 and 4 had particularly large MAPEs in

Maine and Wyoming. For all six models in every state, MAPEs increased almost

monotonically with the length of the forecast horizon.

For Models 1 and 2, increasing the length of the base period reduced MAPEs

slightly in Maine, Wyoming, and Ohio. In Florida, however, increasing the length of

the base period consistently raised MAPEs for both models. For Models 3 and 4,

increasing the length of the base period generally reduced MAPEs in all four states,

especially for longer forecast horizons. For Models 5 and 6, increases in the base

period sometimes raised MAPEs and other times reduced them. For linear models,

then, increasing the base period beyond 10 years did not improve precision

appreciably (and sometimes made it substantially worse), whereas for nonlinear

models it generally improved precision.
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For every state, model, and forecast horizon, MALPEs for Models 1 and 2 were

very similar to each other. For Models 3–6, however, MALPEs differed

considerably. The direction of bias varied by model and by state. In most instances,

MALPEs for Models 1 and 2 had negative signs for Maine, Wyoming, and Florida,

and positive signs for Ohio. This most likely reflects the fact that the first three states

had larger population increases in the second half of the century than the first half,

whereas Ohio had larger increases in the first half. Models 3–5 had predominantly

positive signs in every state except Florida and Model 6 had predominantly positive

signs in Florida and Ohio and predominantly negative signs in Maine and Wyoming.

Bias generally increased with the length of the forecast horizon. If MALPEs were

positive for 10-year horizons, they generally became larger positive numbers as the

horizon increased. If they were negative for 10-year horizons, they generally became

larger negative numbers as the horizon increased. This occurred for almost all

combinations of state, model, and base period. The only exception was when MALPEs

for 10-year horizons were close to zero; in these instances, the impact of increases in

length of horizon was inconsistent across states, models, and base periods.

The impact of changes in length of base period on bias varied by state and model.

For Florida, increasing the base period increased the negative bias for Models 1, 2,

3, and 5 (sometimes substantially), but reduced bias for Models 4 and 6. For

Wyoming, it substantially reduced the upward bias for Models 3 and 4 but had little

effect for the other models. For Ohio, it generally reduced upward bias, but the

effects were very small for some models and horizons. For Maine, it sometimes

exacerbated the upward or downward biases, but generally had little impact. There

does not appear to be any consistent relationship between the length of the base

period and the tendency for forecasts to be too high or too low.

For all states, horizons, and base periods, half-widths for Models 1 and 2 were

similar to each other, but the degree of similarity was not quite as high as it was for

MAPEs. In most instances, half-widths for Models 1 and 2 were smaller (sometimes

substantially so) than half-widths for Models 3–6. Model 3 generally had the largest

half-widths of all six models. For all states, models, and base periods, half-widths

increased with the length of the horizon; in many instances, the increases were quite

large.

For most combinations of state, model, and horizon, increasing the base period

reduced the half-width. The reductions were especially large for Models 3 and 4,

and were generally greater for longer horizons than for shorter horizons. The only

exception was Model 1 in Florida, where increasing the length of the base period

slightly raised the size of the half-width.

The hybrid model performed reasonably well in every state. MAPEs were

generally moderate, falling somewhere between the smallest and the largest of the

six individual models; they were usually closer to the smallest than the largest and

in some instances were smaller than for any individual model. Half-widths for the

hybrid model were also fairly moderate, increasing with the length of forecast

horizon in every state and falling with increases in the base period in every state

except Ohio. MALPEs were uniformly negative in Florida and uniformly positive in

the other three states (except for the 10-year base period in Maine); the extent of the
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downward bias in Florida was considerably greater than the extent of the upward

bias in the other states.

Results by launch year

How similar are the results from one launch year to another? To answer this

question, we calculated the average errors and half-widths of the state forecasts for

each of the three launch years, by model, length of base period, and length of

forecast horizon. Again, detailed results are available from the authors upon request;

we summarize them here.

For every launch year and every combination of model, base period, and forecast

horizon, MAPEs for Model 1 were very similar to those for Model 2. For 1950,

Models 1, 2, and 6 generally had smaller MAPEs than Models 3–5. For short base

periods and long horizons, the differences were sometimes very large. For 1960,

Models 1 and 2 generally had the smallest MAPEs for 10-, 20-, and 30-year base

periods, but for 40- and 50-year base periods MAPEs were similar for all six

individual models. For 1970, MAPEs were roughly similar for all six models for

short base periods, but for long base periods MAPEs were generally smaller for

Models 3 and 4 than for the other models. In most instances, MAPEs increased with

the forecast horizon for all six individual models in all three launch years.

For Models 1 and 2, MAPEs for launch years 1950 and 1970 were similar to each

other but were somewhat larger than MAPEs for 1960. Models 5 and 6 also had

generally larger MAPEs for 1950 and 1970 than for 1960, but did not display as

much consistency from one launch year to another as Models 1 and 2. For Models 3

and 4, MAPEs were generally largest for 1950 and smallest for 1970. Differences in

MAPEs from one launch year to another were considerably larger for Models 3 and

4 than for the other models. Overall, the linear-growth models displayed somewhat

more consistency from one launch year to another than did the nonlinear-growth

models.

MALPEs varied considerably from one launch year to another. For Models 1 and

2, MALPEs were negative for every combination of base period and forecast

horizon for launch years 1950 and 1970, but were positive for a number of

combinations for 1960. For Models 3 and 4, MALPEs were positive for most base-

horizon combinations for 1950 and 1960, but were negative for a number of

combinations for 1970. Models 5 and 6 displayed decidedly mixed results. As has

been noted before, bias appears to vary substantially (and unpredictably) from one

launch year to another (e.g., Rayer 2004; Smith and Sincich 1992). Lengthening the

base period had no consistent impact on the results, sometimes raising MALPEs and

other times reducing them.

In all three launch years, half-widths were similar for Models 1 and 2 for most

base period/forecast horizon combinations. In every combination, they were smaller

(usually much smaller) than the corresponding half-widths for Models 3 and 4. Half-

widths for Models 5 and 6 generally fell somewhere between those for Models 1 and

2 and those for Models 3 and 4. There was no consistent relationship between the

launch year and the size of the half-width; sometimes they were largest for 1950,

sometimes for 1960, and sometimes for 1970. For every combination of model, base
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period, and launch year, half-widths increased monotonically with the length of the

forecast horizon. In most combinations of model, forecast horizon, and launch year,

half-widths declined as the base period increased.

In most instances, then, the results regarding the effects of differences in base

period, forecast horizon, and model on forecast errors and half-widths were about

the same for each individual launch year as they were when the launch years were

aggregated. The values of the errors and half-widths themselves, however, often

differed considerably from one launch year to another.

We also evaluated the results for the hybrid model (Model 7) for each launch

year. MAPEs from the hybrid model typically were similar to those found for the

most precise individual model and sometimes were smaller than for any of the

individual models. The hybrid model itself generally had the largest MAPEs for

1950 and the smallest for 1960. For most combinations of base period and forecast

horizon, the hybrid model exhibited a downward bias in 1950 and 1970 and an

upward bias in 1960; however, the magnitude of the bias was generally fairly small.

Half-widths were typically larger than those found for Models 1 and 2 but smaller

than those found for Models 3 and 4.

A test of prediction intervals

Many different time series models could be constructed using different base periods,

launch years, and sets of assumptions; each implies a different set of prediction

intervals for each forecast horizon. How well do the models analyzed in this study

perform in terms of predicting the uncertainty of future population growth?

One way to address this question is to calculate the number of population counts

falling inside the prediction intervals associated with each set of forecasts (e.g.,

Cohen 1986; Keyfitz 1977; Smith and Sincich 1988; Swanson and Beck 1994; Voss

et al. 1981). Table 6 shows the calculations for each combination of model, base

period, and forecast horizon for forecasts aggregated across all states and launch

years. Each cell is based on 12 forecasts (four states and three launch years). If the

68% prediction intervals provide valid measures of uncertainty, they will encompass

approximately eight of the 12 out-of-sample population counts. Cells in which

between seven and nine counts fell within the prediction interval are highlighted in

the table.

According to this criterion, the prediction intervals for Models 1–3 did not

provide valid measures of uncertainty. The intervals associated with Models 1 and 2

were too narrow. In no set of forecasts did more than six of the 12 population counts

fall inside the predicted interval; in some sets, only two or three fell inside. In this

study, then, the two linear-growth models consistently underestimated uncertainty.

Similar results were reported by Voss et al. (1981).

Differences in the length of the forecast horizon did not have much effect on the

number of counts falling inside the prediction intervals for Models 1 and 2, but

increasing the length of the base period generally led to a smaller number falling

inside. The latter result is particularly noteworthy, as it suggests that fewer

observations in the base period improved the validity of this measure of uncertainty

for linear-growth models.

Precision, bias, and uncertainty for state population forecasts 363

123



The prediction intervals associated with Model 3 were too wide. In all but two

sets of forecasts, 10, 11, or all 12 counts fell inside the predicted intervals. This

model consistently overestimated uncertainty, especially for longer forecast

horizons.

Models 4–7 performed considerably better than Models 1–3. For 10-year

horizons, between four and seven forecasts fell inside the prediction intervals; for

20-year horizons, between five and nine; and for 30-year horizons, between six and

eleven. Model 4 performed particularly well for the 20-year horizon and Models 5–

7 performed particularly well for the 30-year horizon. Although this sample is too

small to support general conclusions, these results suggest that some time series

models may produce prediction intervals that provide fairly realistic measures of

forecast uncertainty.

For the four nonlinear-growth models, the length of the base period did not have

a consistent impact on the number of counts falling inside the prediction intervals.

For Models 3 and 4, the number increased slightly with the length of the base

Table 6 All states and launch years: number of population counts falling within the 68% prediction

interval by model, length of base period, and length of forecast horizon

Horizon length Base period length

10 20 30 40 50

Model 1: (1,1,0) 10 6 5 6 5 4

20 5 3 5 4 2

30 5 4 5 5 4

Model 2: (0,1,1) 10 5 5 4 4 4

20 6 3 3 2 2

30 5 4 5 3 3

Model 3: (2,2,0) 10 7 10 10 10 9

20 10 11 11 11 11

30 11 12 12 12 12

Model 4: (0,2,1) 10 6 6 5 7 7

20 7 9 8 9 8

30 6 8 9 10 11

Model 5: (0,2,2)a 10 5 6 6 6 5

20 7 6 7 6 5

30 7 7 9 9 8

Model 6: ln(0,1,1) 10 6 4 7 7 5

20 8 6 8 8 6

30 7 7 8 8 7

Model 7: Hybrid 10 7 5 5 6 5

20 6 4 6 5 4

30 7 7 8 8 7

a Model does not include a constant term
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period, but for Models 5 and 6 it followed no clear pattern, sometimes rising and

sometimes falling. The reduction in uncertainty associated with increases in the

length of the base period noted in Table 5 for nonlinear models was thus supported

by the empirical evidence: the intervals became smaller, but the number of counts

falling inside them remained about constant.

Increasing the length of the forecast horizon had a small but generally positive

effect on the number of counts falling inside the prediction intervals for the four

nonlinear-growth models. This suggests that these models may produce prediction

intervals that grow more rapidly than the true degree of uncertainty as the forecast

horizon becomes longer. More research is needed before we can draw firm

conclusions on this point.

Summary and conclusions

Time series models have several drawbacks compared to most extrapolation methods

used for population forecasting. They are considerably more complex and difficult to

apply than simpler methods. Specifying them correctly requires a high level of

expertise and a substantial time commitment; this can be burdensome when models

must be specified for a large number of geographic areas (e.g., states or counties).

Furthermore, they have not been found to produce more accurate forecasts than

simpler methods (Smith et al. 2001). However, they offer one major advantage

compared to simpler methods: they provide prediction intervals to accompany their

point forecasts. This characteristic has led to a substantial amount of research on time

series models over the last several decades. Very little of this research, however, has

considered subnational population forecasts or attempted to evaluate out-of-sample

forecast accuracy or the empirical validity of prediction intervals.

In this study, we developed six individual ARIMA time series models reflecting a

variety of population growth trajectories, applied them using data from four states in

the United States, and evaluated the accuracy of the resulting population forecasts.

To address the model misspecification that may occur when observations are

combined across states, we also developed a hybrid model (Model 7) based on the

best individual model (using untransformed data) for each state and launch year.

The best individual model was identified by analyzing autocorrelation and partial

autocorrelation functions and applying Dickey–Fuller, Bayesian Information

Criteria, and Portmanteau statistical tests.

Using data for a variety of launch years, base periods, and forecast horizons

between 1900 and 2000, we constructed 315-point forecasts and sets of prediction

intervals for each state. We evaluated these forecasts by comparing them to

population counts for the corresponding target years. Although the evidence was not

always clear-cut, a number of distinct patterns emerged.

The two linear-growth models (Models 1 and 2) produced forecasts that differed

very little from each other, leading to MAPEs, MALPEs, and half-widths that were

much the same for both models. It appears that the presence or absence of first-order

autoregressive and moving average terms does not have much impact on forecasts
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from linear-growth models. Similar results have been reported before (Alho 1990;

Voss et al. 1981).

For linear-growth models, 10 years of base data were generally sufficient to

achieve—or at least come close to—maximum forecast precision (i.e., the smallest

MAPEs). This result was found for every state and launch year, even for 20- and 30-

year forecast horizons. Similar results for simple extrapolation techniques have been

reported before (e.g., Rayer 2004; Smith and Sincich 1990). Although longer base

periods may be desirable for other purposes, they do not appear to be necessary for

maximizing the precision of forecasts based on linear-growth models.

Models 3 and 4 are nonlinear-growth models. For these models, 10 years of base

data generally were not sufficient to achieve—or even come close to—maximum

forecast precision. Rather, MAPEs declined as base periods increased, albeit at a

generally diminishing rate. Typically, the declines were greater for longer horizons

than shorter horizons. Although Models 1 and 2 produced more precise forecasts

than Models 3 and 4 when the base periods were relatively short, their superiority

diminished as the base period increased.

Models 5 and 6 are also nonlinear-growth models, but are not as explosive as

Models 3 and 4. Consequently, the impact of increases in the base period for these

two models was more nearly similar to that observed for Models 1 and 2 than to that

observed for Models 3 and 4. For Model 5, MAPEs increased slightly with increases

in the base period, whereas for Model 6 they declined slightly. As was true for

Models 1 and 2, longer base periods did not have much impact on forecast precision

for these two models.

On average, the linear-growth models had a negative bias and the nonlinear-

growth models had a positive bias. However, this result was not found for every

state and launch year. Given this finding and the fact that bias has been found to

vary considerably from one launch year to another (e.g., Rayer 2004; Smith and

Sincich 1988, 1992), we do not believe there is enough evidence to draw any

general conclusions regarding the bias inherent in different types of time series

forecasting models. We note that changes in the length of the base period had no

consistent impact on bias for either type of model; this result has also been reported

before (Rayer 2004; Smith and Sincich 1990).

The hybrid model performed very well on tests of precision and bias. Its MAPEs

were generally similar to—and sometimes smaller than—the smallest MAPE found

for any individual model. In most instances, its MALPEs were smaller (in absolute

value) than those found for individual models. Furthermore, the hybrid model

showed no consistent direction of bias. These results were found in most analyses of

individual states and launch years as well as when the data were aggregated across

all states and launch years.

Models 1 and 2 produced the smallest half-widths and Model 3 produced the

largest. This result was found for virtually every combination of state, launch year,

base period, and forecast horizon. Small half-widths are not necessarily a positive

characteristic of population forecasts, however; what matters is how well the

prediction intervals derived from those half-widths measure forecast uncertainty. As

shown in Table 6, the prediction intervals produced by Models 1 and 2 were

considerably too narrow (i.e., too few counts fell inside) while those produced by
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Model 3 were considerably too wide (i.e., too many fell inside). Models 4–6 and the

hybrid model were more successful in producing realistic prediction intervals than

Models 1–3; for these models, the number of counts falling inside the intervals was

often close to the predicted number. These results suggest that some specifications

of time series models may provide fairly realistic measures of forecast uncertainty

but others do not.

In our view, the major advantage of time series models compared to simpler

extrapolation methods is their ability to produce prediction intervals to accompany

point forecasts. If those prediction intervals cannot provide realistic measures of

uncertainty, much of the potential value of time series models is lost. Given the

results of the present study, we believe there is some basis for optimism regarding

the possibility that time series models might be able to produce realistic prediction

intervals. Although some models performed poorly in this regard, others (partic-

ularly Models 6 and 7) performed very well.

Many different time series forecasting models can be specified, each providing a

different set of point forecasts and prediction intervals (e.g., Cohen 1986; Keilman

et al. 2002; Lee 1974; Sanderson 1995). These models are subject to errors in the

base data, errors in specifying the model, errors in estimating the model’s

parameters, and structural changes that invalidate the model’s statistical relation-

ships over time (Lee 1992). It is therefore not surprising that the models examined

in this study produced widely differing values for MAPEs, MALPEs, and half-

widths and provided mixed results regarding the number of population counts

falling within the predicted intervals.

Clearly, the development of empirically valid prediction intervals based on time

series models requires a significant investment of time and effort. The generally

good performance of the hybrid model illustrates the importance of using best

practices to identify the optimal model for a particular forecast. Applying an

arbitrarily specified or a single unanalyzed model to a large number of states or local

areas is not likely to produce useful results.

Many questions remain to be answered before we can draw any firm conclusions,

however. Would results similar to those reported here be found for other states and

time periods? Would different model specifications or evaluation criteria lead to

different results? Can the use of location-specific characteristics improve the model

selection process? Can ways other than the hybrid model described here be found

for combining forecasts? What about forecasts made at the local level? How would

their error characteristics compare to those shown here for states?

Research on other approaches to measuring uncertainty is also needed, such as

basing prediction intervals on the distribution of errors in previous forecasts (e.g.,

Keyfitz 1981; Smith and Sincich 1988; Stoto 1983; Tayman et al. 2005), the

application of expert judgment (e.g., Lutz et al. 1999), or some combination of

approaches (e.g., Keilman et al. 2002). We believe further research on forecast

accuracy and the measurement of uncertainty will be both intellectually interesting

and practically useful, giving data users a more realistic understanding of the

potential accuracy of population forecasts and helping decision makers plan more

effectively for an uncertain future.
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